direct product, non-abelian, soluble
Aliases: C22×GL2(𝔽3), C23.21S4, SL2(𝔽3)⋊1C23, (C2×Q8)⋊2D6, Q8⋊(C22×S3), C2.9(C22×S4), (C22×Q8)⋊3S3, C22.26(C2×S4), (C2×SL2(𝔽3))⋊4C22, (C22×SL2(𝔽3))⋊5C2, SmallGroup(192,1475)
Series: Derived ►Chief ►Lower central ►Upper central
SL2(𝔽3) — C22×GL2(𝔽3) |
Generators and relations for C22×GL2(𝔽3)
G = < a,b,c,d,e,f | a2=b2=c4=e3=f2=1, d2=c2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fdf=c-1, ece-1=cd, fcf=c2d, ede-1=c, fef=e-1 >
Subgroups: 875 in 213 conjugacy classes, 37 normal (8 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, Q8, Q8, C23, C23, D6, C2×C6, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, C24, SL2(𝔽3), C22×S3, C22×C6, C22×C8, C2×SD16, C22×D4, C22×Q8, GL2(𝔽3), C2×SL2(𝔽3), S3×C23, C22×SD16, C2×GL2(𝔽3), C22×SL2(𝔽3), C22×GL2(𝔽3)
Quotients: C1, C2, C22, S3, C23, D6, S4, C22×S3, GL2(𝔽3), C2×S4, C2×GL2(𝔽3), C22×S4, C22×GL2(𝔽3)
(1 22)(2 23)(3 24)(4 21)(5 17)(6 18)(7 19)(8 20)(9 27)(10 28)(11 25)(12 26)(13 31)(14 32)(15 29)(16 30)
(1 14)(2 15)(3 16)(4 13)(5 25)(6 26)(7 27)(8 28)(9 19)(10 20)(11 17)(12 18)(21 31)(22 32)(23 29)(24 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11 3 9)(2 10 4 12)(5 30 7 32)(6 29 8 31)(13 18 15 20)(14 17 16 19)(21 26 23 28)(22 25 24 27)
(2 11 10)(4 9 12)(5 8 29)(6 31 7)(13 19 18)(15 17 20)(21 27 26)(23 25 28)
(1 14)(2 19)(3 16)(4 17)(5 21)(6 28)(7 23)(8 26)(9 15)(10 18)(11 13)(12 20)(22 32)(24 30)(25 31)(27 29)
G:=sub<Sym(32)| (1,22)(2,23)(3,24)(4,21)(5,17)(6,18)(7,19)(8,20)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30), (1,14)(2,15)(3,16)(4,13)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,17)(12,18)(21,31)(22,32)(23,29)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11,3,9)(2,10,4,12)(5,30,7,32)(6,29,8,31)(13,18,15,20)(14,17,16,19)(21,26,23,28)(22,25,24,27), (2,11,10)(4,9,12)(5,8,29)(6,31,7)(13,19,18)(15,17,20)(21,27,26)(23,25,28), (1,14)(2,19)(3,16)(4,17)(5,21)(6,28)(7,23)(8,26)(9,15)(10,18)(11,13)(12,20)(22,32)(24,30)(25,31)(27,29)>;
G:=Group( (1,22)(2,23)(3,24)(4,21)(5,17)(6,18)(7,19)(8,20)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30), (1,14)(2,15)(3,16)(4,13)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,17)(12,18)(21,31)(22,32)(23,29)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11,3,9)(2,10,4,12)(5,30,7,32)(6,29,8,31)(13,18,15,20)(14,17,16,19)(21,26,23,28)(22,25,24,27), (2,11,10)(4,9,12)(5,8,29)(6,31,7)(13,19,18)(15,17,20)(21,27,26)(23,25,28), (1,14)(2,19)(3,16)(4,17)(5,21)(6,28)(7,23)(8,26)(9,15)(10,18)(11,13)(12,20)(22,32)(24,30)(25,31)(27,29) );
G=PermutationGroup([[(1,22),(2,23),(3,24),(4,21),(5,17),(6,18),(7,19),(8,20),(9,27),(10,28),(11,25),(12,26),(13,31),(14,32),(15,29),(16,30)], [(1,14),(2,15),(3,16),(4,13),(5,25),(6,26),(7,27),(8,28),(9,19),(10,20),(11,17),(12,18),(21,31),(22,32),(23,29),(24,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11,3,9),(2,10,4,12),(5,30,7,32),(6,29,8,31),(13,18,15,20),(14,17,16,19),(21,26,23,28),(22,25,24,27)], [(2,11,10),(4,9,12),(5,8,29),(6,31,7),(13,19,18),(15,17,20),(21,27,26),(23,25,28)], [(1,14),(2,19),(3,16),(4,17),(5,21),(6,28),(7,23),(8,26),(9,15),(10,18),(11,13),(12,20),(22,32),(24,30),(25,31),(27,29)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 6A | ··· | 6G | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 12 | 12 | 12 | 12 | 8 | 6 | 6 | 6 | 6 | 8 | ··· | 8 | 6 | ··· | 6 |
32 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | S3 | D6 | GL2(𝔽3) | S4 | C2×S4 | GL2(𝔽3) |
kernel | C22×GL2(𝔽3) | C2×GL2(𝔽3) | C22×SL2(𝔽3) | C22×Q8 | C2×Q8 | C22 | C23 | C22 | C22 |
# reps | 1 | 6 | 1 | 1 | 3 | 8 | 2 | 6 | 4 |
Matrix representation of C22×GL2(𝔽3) ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 53 | 52 |
0 | 0 | 0 | 0 | 33 | 20 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 53 | 40 |
0 | 0 | 0 | 0 | 21 | 20 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 72 | 0 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,53,33,0,0,0,0,52,20],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,53,21,0,0,0,0,40,20],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,72,0] >;
C22×GL2(𝔽3) in GAP, Magma, Sage, TeX
C_2^2\times {\rm GL}_2({\mathbb F}_3)
% in TeX
G:=Group("C2^2xGL(2,3)");
// GroupNames label
G:=SmallGroup(192,1475);
// by ID
G=gap.SmallGroup(192,1475);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,451,1684,655,172,1013,404,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=e^3=f^2=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*d*f=c^-1,e*c*e^-1=c*d,f*c*f=c^2*d,e*d*e^-1=c,f*e*f=e^-1>;
// generators/relations